1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
lavonne2970770 edited this page 2025-06-02 09:46:25 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations ranging from 1.5 to 70 billion specifications to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A key distinguishing function is its support knowing (RL) step, which was used to fine-tune the design's actions beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately improving both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, implying it's geared up to break down complex questions and reason through them in a detailed manner. This assisted thinking process permits the design to produce more accurate, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually recorded the market's attention as a versatile text-generation model that can be integrated into various workflows such as representatives, sensible thinking and information analysis tasks.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling effective reasoning by routing questions to the most appropriate expert "clusters." This technique enables the design to focus on different problem domains while maintaining overall efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, wiki.dulovic.tech and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective designs to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous material, and examine models against crucial security criteria. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To the DeepSeek-R1 model, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit boost, develop a limitation increase demand and reach out to your account group.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to utilize Amazon Bedrock Guardrails. For guidelines, see Establish permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and evaluate designs against essential safety criteria. You can execute safety measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to evaluate user inputs and design responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:

1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 model.

The design detail page offers important details about the design's capabilities, prices structure, and execution guidelines. You can discover detailed use instructions, including sample API calls and code bits for integration. The design supports different text generation tasks, consisting of content production, code generation, and concern answering, utilizing its support discovering optimization and CoT reasoning capabilities. The page likewise consists of release alternatives and licensing details to help you get started with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of instances, get in a variety of circumstances (between 1-100). 6. For example type, pick your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you might want to examine these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the design.

When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive interface where you can experiment with various triggers and adjust design parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum outcomes. For example, material for reasoning.

This is an exceptional way to check out the model's thinking and text generation abilities before integrating it into your applications. The play ground provides immediate feedback, helping you understand how the design responds to various inputs and letting you fine-tune your prompts for ideal results.

You can quickly check the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends a request to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 convenient techniques: using the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both methods to help you pick the technique that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser shows available models, with details like the provider name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the design card to view the design details page.

    The design details page consists of the following details:

    - The design name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you deploy the model, it's advised to evaluate the design details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the instantly created name or create a customized one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For wiki.myamens.com Initial circumstances count, go into the number of instances (default: 1). Selecting suitable instance types and counts is important for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The release procedure can take a number of minutes to finish.

    When implementation is total, your endpoint status will change to InService. At this point, the model is prepared to accept inference requests through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the implementation is complete, you can conjure up the model utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid unwanted charges, finish the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace deployments.
  5. In the Managed releases section, find the endpoint you wish to delete.
  6. Select the endpoint, forum.pinoo.com.tr and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious services utilizing AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and optimizing the inference performance of large language models. In his downtime, Vivek enjoys hiking, viewing motion pictures, and attempting various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building solutions that help consumers accelerate their AI journey and unlock company value.