ScreenLockDetector/src/vulkanwidget.cpp

1023 lines
34 KiB
C++

#include "vulkanwidget.h"
#include "vulkanrenderer.h"
#include <QDebug>
#include <QShowEvent>
#include <QHideEvent>
#include <QResizeEvent>
#include <QPaintEvent>
#include <QWindow>
#include <QApplication>
#include <algorithm>
#include <cmath>
// Include volk for Vulkan function loading
#define VK_NO_PROTOTYPES
#include "../../third_party/volk/volk.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Platform-specific headers
#ifdef _WIN32
#include <windows.h>
#elif defined(__linux__)
#include <X11/Xlib.h>
#endif
VulkanWidget::VulkanWidget(QWidget *parent)
: QWidget(parent)
, m_instance(VK_NULL_HANDLE)
, m_physicalDevice(VK_NULL_HANDLE)
, m_device(VK_NULL_HANDLE)
, m_queue(VK_NULL_HANDLE)
, m_surface(VK_NULL_HANDLE)
, m_swapchain(VK_NULL_HANDLE)
, m_commandPool(VK_NULL_HANDLE)
, m_initialized(false)
, m_renderingEnabled(false)
, m_needsResize(false)
, m_frameCount(0)
, m_queueFamilyIndex(0)
, m_currentFrame(0)
, m_surfaceWidth(0)
, m_surfaceHeight(0)
, m_renderTimer(nullptr)
, m_renderer(nullptr)
, m_rotationAngle(0.0)
, m_wavePhase(0.0)
, m_startTime(QDateTime::currentDateTime())
, m_lastLockDuration(0)
, m_lastLockFrameCount(0)
, m_lockPaintFrameCount(0)
, m_lockCount(0)
{
// Set widget attributes for native window
setAttribute(Qt::WA_NativeWindow);
setAttribute(Qt::WA_PaintOnScreen);
setAttribute(Qt::WA_OpaquePaintEvent);
// Create render timer
m_renderTimer = new QTimer(this);
connect(m_renderTimer, &QTimer::timeout, this, &VulkanWidget::onRenderTimer);
qDebug() << "VulkanWidget created";
}
VulkanWidget::~VulkanWidget()
{
qDebug() << "VulkanWidget destroying...";
if (m_renderTimer) {
m_renderTimer->stop();
}
// Clean up renderer first
if (m_renderer) {
m_renderer->cleanup();
delete m_renderer;
m_renderer = nullptr;
}
cleanupVulkan();
qDebug() << "VulkanWidget destroyed";
}
bool VulkanWidget::initializeVulkan()
{
qDebug() << "Initializing Vulkan...";
if (m_initialized) {
qDebug() << "Vulkan already initialized";
return true;
}
// Step 1: Initialize volk
if (!initializeVolk()) {
setError("Failed to initialize volk");
return false;
}
// Step 2: Create Vulkan instance
if (!createInstance()) {
setError("Failed to create Vulkan instance");
return false;
}
// Step 3: Create surface from native window
if (!createSurface()) {
setError("Failed to create Vulkan surface");
return false;
}
// Step 4: Select physical device
if (!selectPhysicalDevice()) {
setError("Failed to select physical device");
return false;
}
// Step 5: Create logical device
if (!createDevice()) {
setError("Failed to create logical device");
return false;
}
// Step 6: Create swapchain
if (!createSwapchain()) {
setError("Failed to create swapchain");
return false;
}
// Step 7: Create command objects
if (!createCommandObjects()) {
setError("Failed to create command objects");
return false;
}
// Step 8: Create synchronization objects
if (!createSyncObjects()) {
setError("Failed to create sync objects");
return false;
}
// Step 9: Create VulkanRenderer - but only if we have reasonable dimensions
if (m_surfaceWidth >= 100 && m_surfaceHeight >= 100) {
m_renderer = new VulkanRenderer();
// Get swapchain format
VkSurfaceFormatKHR surfaceFormat;
uint32_t formatCount = 0;
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, nullptr);
if (formatCount > 0) {
std::vector<VkSurfaceFormatKHR> formats(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, formats.data());
surfaceFormat = formats[0];
}
// Initialize renderer
if (!m_renderer->initialize(m_device, m_physicalDevice,
m_queue, m_queueFamilyIndex,
static_cast<uint32_t>(surfaceFormat.format),
m_surfaceWidth, m_surfaceHeight)) {
setError("Failed to initialize VulkanRenderer");
delete m_renderer;
m_renderer = nullptr;
return false;
}
qDebug() << "VulkanRenderer initialized successfully!";
qDebug() << "Widget size:" << width() << "x" << height()
<< "| Surface size:" << m_surfaceWidth << "x" << m_surfaceHeight;
} else {
qDebug() << "VulkanRenderer initialization deferred - window too small:" << m_surfaceWidth << "x" << m_surfaceHeight;
}
m_initialized = true;
qDebug() << "Vulkan initialization successful!";
return true;
}
bool VulkanWidget::initializeVolk()
{
qDebug() << "Initializing volk...";
VkResult result = volkInitialize();
if (result != VK_SUCCESS) {
qDebug() << "Failed to initialize volk, error code:" << result;
return false;
}
qDebug() << "Volk initialized successfully";
return true;
}
bool VulkanWidget::createInstance()
{
qDebug() << "Creating Vulkan instance...";
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "VulkanWidget";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
std::vector<const char*> extensions = getRequiredInstanceExtensions();
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data();
createInfo.enabledLayerCount = 0;
VkResult result = vkCreateInstance(&createInfo, nullptr, &m_instance);
if (result != VK_SUCCESS) {
qDebug() << "Failed to create Vulkan instance, error code:" << result;
return false;
}
// Load instance-level functions
volkLoadInstance(m_instance);
qDebug() << "Vulkan instance created successfully";
return true;
}
bool VulkanWidget::createSurface()
{
qDebug() << "Creating Vulkan surface from native window...";
if (!windowHandle()) {
qDebug() << "Window handle not available, creating window...";
create();
if (!windowHandle()) {
qDebug() << "Failed to create window handle";
return false;
}
}
QWindow *window = windowHandle();
#ifdef _WIN32
VkWin32SurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.hwnd = reinterpret_cast<HWND>(window->winId());
createInfo.hinstance = GetModuleHandle(nullptr);
VkResult result = vkCreateWin32SurfaceKHR(m_instance, &createInfo, nullptr, &m_surface);
#elif defined(__linux__)
VkXlibSurfaceCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
// Get X11 display - use default display
createInfo.dpy = XOpenDisplay(nullptr);
if (!createInfo.dpy) {
qDebug() << "Failed to open X11 display";
return false;
}
createInfo.window = static_cast<Window>(window->winId());
VkResult result = vkCreateXlibSurfaceKHR(m_instance, &createInfo, nullptr, &m_surface);
#elif defined(__APPLE__)
// macOS requires MoltenVK and Metal
VkMetalSurfaceCreateInfoEXT createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT;
createInfo.pLayer = nullptr; // This needs proper Metal layer setup
VkResult result = vkCreateMetalSurfaceEXT(m_instance, &createInfo, nullptr, &m_surface);
#else
qDebug() << "Unsupported platform for Vulkan surface creation";
return false;
#endif
if (result != VK_SUCCESS) {
qDebug() << "Failed to create Vulkan surface, error code:" << result;
return false;
}
qDebug() << "Vulkan surface created successfully";
return true;
}
bool VulkanWidget::selectPhysicalDevice()
{
qDebug() << "Selecting physical device...";
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(m_instance, &deviceCount, nullptr);
if (deviceCount == 0) {
qDebug() << "Failed to find GPUs with Vulkan support";
return false;
}
std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(m_instance, &deviceCount, devices.data());
// Select the first suitable device
for (const auto& device : devices) {
VkPhysicalDeviceProperties properties;
vkGetPhysicalDeviceProperties(device, &properties);
qDebug() << "Found device:" << properties.deviceName;
// Temporarily set physical device to check queue families
m_physicalDevice = device;
// Check if device supports our queue family
uint32_t queueFamilyIndex;
if (findQueueFamily(queueFamilyIndex)) {
m_queueFamilyIndex = queueFamilyIndex;
qDebug() << "Selected device:" << properties.deviceName;
return true;
}
}
// Reset if no suitable device found
m_physicalDevice = VK_NULL_HANDLE;
qDebug() << "Failed to find suitable physical device";
return false;
}
bool VulkanWidget::findQueueFamily(uint32_t &queueFamilyIndex)
{
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyCount, queueFamilies.data());
for (uint32_t i = 0; i < queueFamilyCount; i++) {
// Check if queue family supports graphics
if (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
// Check if queue family supports presentation
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, i, m_surface, &presentSupport);
if (presentSupport) {
queueFamilyIndex = i;
return true;
}
}
}
return false;
}
bool VulkanWidget::createDevice()
{
qDebug() << "Creating logical device...";
float queuePriority = 1.0f;
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = m_queueFamilyIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriority;
VkPhysicalDeviceFeatures deviceFeatures = {};
std::vector<const char*> deviceExtensions = getRequiredDeviceExtensions();
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.queueCreateInfoCount = 1;
createInfo.pEnabledFeatures = &deviceFeatures;
createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
createInfo.enabledLayerCount = 0;
VkResult result = vkCreateDevice(m_physicalDevice, &createInfo, nullptr, &m_device);
if (result != VK_SUCCESS) {
qDebug() << "Failed to create logical device, error code:" << result;
return false;
}
// Load device-level functions
volkLoadDevice(m_device);
// Get queue handle
vkGetDeviceQueue(m_device, m_queueFamilyIndex, 0, &m_queue);
qDebug() << "Logical device created successfully";
return true;
}
bool VulkanWidget::createSwapchain()
{
qDebug() << "Creating swapchain...";
qDebug() << "Widget size:" << width() << "x" << height();
qDebug() << "Device pixel ratio:" << devicePixelRatioF();
// Query surface capabilities
VkSurfaceCapabilitiesKHR capabilities;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_physicalDevice, m_surface, &capabilities);
qDebug() << "Surface capabilities - current extent:"
<< capabilities.currentExtent.width << "x" << capabilities.currentExtent.height;
qDebug() << "Surface capabilities - min extent:"
<< capabilities.minImageExtent.width << "x" << capabilities.minImageExtent.height;
qDebug() << "Surface capabilities - max extent:"
<< capabilities.maxImageExtent.width << "x" << capabilities.maxImageExtent.height;
// Query surface formats
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, nullptr);
std::vector<VkSurfaceFormatKHR> formats(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, formats.data());
// Query present modes
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &presentModeCount, nullptr);
std::vector<VkPresentModeKHR> presentModes(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &presentModeCount, presentModes.data());
// Select format
VkSurfaceFormatKHR surfaceFormat = formats[0];
for (const auto& format : formats) {
if (format.format == VK_FORMAT_B8G8R8A8_SRGB &&
format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
surfaceFormat = format;
break;
}
}
// Select present mode (prefer mailbox, fallback to FIFO)
VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR;
for (const auto& mode : presentModes) {
if (mode == VK_PRESENT_MODE_MAILBOX_KHR) {
presentMode = mode;
break;
}
}
// Determine extent
VkExtent2D extent;
if (capabilities.currentExtent.width != UINT32_MAX) {
extent = capabilities.currentExtent;
qDebug() << "Using surface-provided extent:" << extent.width << "x" << extent.height;
} else {
// Calculate extent based on widget size with DPI scaling
uint32_t pixelWidth = static_cast<uint32_t>(width() * devicePixelRatioF());
uint32_t pixelHeight = static_cast<uint32_t>(height() * devicePixelRatioF());
extent.width = std::max(capabilities.minImageExtent.width,
std::min(capabilities.maxImageExtent.width, pixelWidth));
extent.height = std::max(capabilities.minImageExtent.height,
std::min(capabilities.maxImageExtent.height, pixelHeight));
qDebug() << "Calculated extent from widget:" << extent.width << "x" << extent.height
<< "(widget:" << width() << "x" << height()
<< "* DPR:" << devicePixelRatioF() << ")";
}
m_surfaceWidth = extent.width;
m_surfaceHeight = extent.height;
qDebug() << "Final swapchain extent:" << m_surfaceWidth << "x" << m_surfaceHeight;
// Determine image count
uint32_t imageCount = capabilities.minImageCount + 1;
if (capabilities.maxImageCount > 0 && imageCount > capabilities.maxImageCount) {
imageCount = capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = m_surface;
createInfo.minImageCount = imageCount;
createInfo.imageFormat = surfaceFormat.format;
createInfo.imageColorSpace = surfaceFormat.colorSpace;
createInfo.imageExtent = extent;
createInfo.imageArrayLayers = 1;
createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.preTransform = capabilities.currentTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
VkResult result = vkCreateSwapchainKHR(m_device, &createInfo, nullptr, &m_swapchain);
if (result != VK_SUCCESS) {
qDebug() << "Failed to create swapchain, error code:" << result;
return false;
}
// Retrieve swapchain images
vkGetSwapchainImagesKHR(m_device, m_swapchain, &imageCount, nullptr);
m_swapchainImages.resize(imageCount);
vkGetSwapchainImagesKHR(m_device, m_swapchain, &imageCount,
reinterpret_cast<VkImage*>(m_swapchainImages.data()));
// Create image views for swapchain images
m_swapchainImageViews.resize(imageCount);
for (uint32_t i = 0; i < imageCount; i++) {
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = reinterpret_cast<VkImage>(m_swapchainImages[i]);
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = surfaceFormat.format;
viewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
VkImageView imageView;
result = vkCreateImageView(m_device, &viewInfo, nullptr, &imageView);
if (result != VK_SUCCESS) {
qDebug() << "Failed to create image view" << i << ", error code:" << result;
return false;
}
m_swapchainImageViews[i] = reinterpret_cast<void*>(imageView);
}
qDebug() << "Swapchain created successfully with" << imageCount << "images, size:"
<< m_surfaceWidth << "x" << m_surfaceHeight;
return true;
}
bool VulkanWidget::createCommandObjects()
{
qDebug() << "Creating command objects...";
VkCommandPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.queueFamilyIndex = m_queueFamilyIndex;
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
VkResult result = vkCreateCommandPool(m_device, &poolInfo, nullptr, &m_commandPool);
if (result != VK_SUCCESS) {
qDebug() << "Failed to create command pool, error code:" << result;
return false;
}
m_commandBuffers.resize(MAX_FRAMES_IN_FLIGHT);
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = m_commandPool;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = static_cast<uint32_t>(m_commandBuffers.size());
result = vkAllocateCommandBuffers(m_device, &allocInfo, m_commandBuffers.data());
if (result != VK_SUCCESS) {
qDebug() << "Failed to allocate command buffers, error code:" << result;
return false;
}
qDebug() << "Command objects created successfully";
return true;
}
bool VulkanWidget::createSyncObjects()
{
qDebug() << "Creating synchronization objects...";
m_imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
m_renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
m_inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
VkSemaphoreCreateInfo semaphoreInfo = {};
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
VkFenceCreateInfo fenceInfo = {};
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &m_imageAvailableSemaphores[i]) != VK_SUCCESS ||
vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &m_renderFinishedSemaphores[i]) != VK_SUCCESS ||
vkCreateFence(m_device, &fenceInfo, nullptr, &m_inFlightFences[i]) != VK_SUCCESS) {
qDebug() << "Failed to create synchronization objects";
return false;
}
}
qDebug() << "Synchronization objects created successfully";
return true;
}
bool VulkanWidget::recreateSwapchain()
{
qDebug() << "Recreating swapchain...";
// Wait for device to be idle
vkDeviceWaitIdle(m_device);
// Cleanup old swapchain
cleanupSwapchain();
// Create new swapchain
if (!createSwapchain()) {
qDebug() << "Failed to recreate swapchain";
return false;
}
// Update renderer with new surface dimensions
if (m_renderer) {
qDebug() << "Updating VulkanRenderer to surface size:" << m_surfaceWidth << "x" << m_surfaceHeight;
m_renderer->resize(m_surfaceWidth, m_surfaceHeight);
}
qDebug() << "Swapchain recreated successfully";
return true;
}
void VulkanWidget::renderFrame()
{
if (!m_initialized || !m_renderingEnabled) {
return;
}
// Wait for previous frame
vkWaitForFences(m_device, 1, &m_inFlightFences[m_currentFrame], VK_TRUE, UINT64_MAX);
// Acquire next image
uint32_t imageIndex;
VkResult result = vkAcquireNextImageKHR(m_device, m_swapchain, UINT64_MAX,
m_imageAvailableSemaphores[m_currentFrame],
VK_NULL_HANDLE, &imageIndex);
if (result == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapchain();
return;
} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
qDebug() << "Failed to acquire swapchain image";
return;
}
// Reset fence
vkResetFences(m_device, 1, &m_inFlightFences[m_currentFrame]);
// Record command buffer
vkResetCommandBuffer(m_commandBuffers[m_currentFrame], 0);
recordCommandBuffer(m_commandBuffers[m_currentFrame], imageIndex);
// Submit command buffer
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
VkSemaphore waitSemaphores[] = {m_imageAvailableSemaphores[m_currentFrame]};
VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = waitSemaphores;
submitInfo.pWaitDstStageMask = waitStages;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &m_commandBuffers[m_currentFrame];
VkSemaphore signalSemaphores[] = {m_renderFinishedSemaphores[m_currentFrame]};
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = signalSemaphores;
result = vkQueueSubmit(m_queue, 1, &submitInfo, m_inFlightFences[m_currentFrame]);
if (result != VK_SUCCESS) {
qDebug() << "Failed to submit draw command buffer";
return;
}
// Present
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = signalSemaphores;
VkSwapchainKHR swapchains[] = {m_swapchain};
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapchains;
presentInfo.pImageIndices = &imageIndex;
result = vkQueuePresentKHR(m_queue, &presentInfo);
if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || m_needsResize) {
m_needsResize = false;
recreateSwapchain();
} else if (result != VK_SUCCESS) {
qDebug() << "Failed to present swapchain image";
}
m_currentFrame = (m_currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
m_frameCount++;
}
void VulkanWidget::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex)
{
// Initialize renderer now if we didn't do it earlier (window was too small)
if (!m_renderer && m_surfaceWidth >= 100 && m_surfaceHeight >= 100) {
qDebug() << "Creating deferred VulkanRenderer with actual surface size:" << m_surfaceWidth << "x" << m_surfaceHeight;
m_renderer = new VulkanRenderer();
VkSurfaceFormatKHR surfaceFormat;
uint32_t formatCount = 0;
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, nullptr);
if (formatCount > 0) {
std::vector<VkSurfaceFormatKHR> formats(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, formats.data());
surfaceFormat = formats[0];
}
if (!m_renderer->initialize(m_device, m_physicalDevice,
m_queue, m_queueFamilyIndex,
static_cast<uint32_t>(surfaceFormat.format),
m_surfaceWidth, m_surfaceHeight)) {
qDebug() << "Failed to initialize deferred VulkanRenderer";
delete m_renderer;
m_renderer = nullptr;
} else {
qDebug() << "Deferred VulkanRenderer initialized successfully with surface size:"
<< m_surfaceWidth << "x" << m_surfaceHeight;
}
}
// Use VulkanRenderer if available
if (m_renderer) {
if (imageIndex >= m_swapchainImageViews.size()) {
qDebug() << "ERROR: imageIndex out of bounds!";
return;
}
VkImageView imageView = reinterpret_cast<VkImageView>(m_swapchainImageViews[imageIndex]);
// Build lock info string
QString lockInfo;
if (m_lastLockTime.isValid()) {
lockInfo = QString("Last Lock: %1\nDuration: %2s\nFrame Count at Lock: %3\nFrames During Lock: %4\nLock Count: %5")
.arg(m_lastLockTime.toString("hh:mm:ss"))
.arg(m_lastLockDuration)
.arg(m_lastLockFrameCount)
.arg(m_lockPaintFrameCount)
.arg(m_lockCount);
}
// Debug: Print dimensions occasionally to check for mismatch
static int debugCounter = 0;
if (debugCounter++ % 300 == 0) { // Every ~5 seconds at 60fps
qDebug() << "Rendering - Widget:" << width() << "x" << height()
<< "| Surface:" << m_surfaceWidth << "x" << m_surfaceHeight;
}
m_renderer->recordCommandBuffer(commandBuffer, imageIndex, imageView,
m_frameCount, m_rotationAngle, m_wavePhase,
m_renderingEnabled, lockInfo.toStdString());
return;
}
// Fallback: Simple clear color pass
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
VkClearColorValue clearColor;
float hue = (m_frameCount % 360) / 360.0f;
float r = std::abs(std::sin(hue * 6.28318f));
float g = std::abs(std::sin((hue + 0.33f) * 6.28318f));
float b = std::abs(std::sin((hue + 0.66f) * 6.28318f));
clearColor.float32[0] = r * 0.5f + 0.1f;
clearColor.float32[1] = g * 0.5f + 0.1f;
clearColor.float32[2] = b * 0.5f + 0.1f;
clearColor.float32[3] = 1.0f;
VkImageSubresourceRange range = {};
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseMipLevel = 0;
range.levelCount = 1;
range.baseArrayLayer = 0;
range.layerCount = 1;
VkImage image = reinterpret_cast<VkImage>(m_swapchainImages[imageIndex]);
VkImageMemoryBarrier barrier1 = {};
barrier1.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier1.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier1.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier1.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier1.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier1.image = image;
barrier1.subresourceRange = range;
barrier1.srcAccessMask = 0;
barrier1.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier1);
vkCmdClearColorImage(commandBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
&clearColor, 1, &range);
VkImageMemoryBarrier barrier2 = {};
barrier2.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier2.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier2.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
barrier2.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier2.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier2.image = image;
barrier2.subresourceRange = range;
barrier2.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier2.dstAccessMask = 0;
vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier2);
vkEndCommandBuffer(commandBuffer);
}
void VulkanWidget::cleanupSwapchain()
{
// Destroy image views first
for (void* imageView : m_swapchainImageViews) {
if (imageView != nullptr) {
vkDestroyImageView(m_device, reinterpret_cast<VkImageView>(imageView), nullptr);
}
}
m_swapchainImageViews.clear();
if (m_swapchain != VK_NULL_HANDLE) {
vkDestroySwapchainKHR(m_device, m_swapchain, nullptr);
m_swapchain = VK_NULL_HANDLE;
}
m_swapchainImages.clear();
}
void VulkanWidget::cleanupVulkan()
{
if (!m_initialized) {
return;
}
if (m_device != VK_NULL_HANDLE) {
vkDeviceWaitIdle(m_device);
}
// Cleanup sync objects
for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
if (m_imageAvailableSemaphores[i] != VK_NULL_HANDLE) {
vkDestroySemaphore(m_device, m_imageAvailableSemaphores[i], nullptr);
}
if (m_renderFinishedSemaphores[i] != VK_NULL_HANDLE) {
vkDestroySemaphore(m_device, m_renderFinishedSemaphores[i], nullptr);
}
if (m_inFlightFences[i] != VK_NULL_HANDLE) {
vkDestroyFence(m_device, m_inFlightFences[i], nullptr);
}
}
// Cleanup command pool
if (m_commandPool != VK_NULL_HANDLE) {
vkDestroyCommandPool(m_device, m_commandPool, nullptr);
}
// Cleanup swapchain
cleanupSwapchain();
// Cleanup device
if (m_device != VK_NULL_HANDLE) {
vkDestroyDevice(m_device, nullptr);
}
// Cleanup surface
if (m_surface != VK_NULL_HANDLE) {
vkDestroySurfaceKHR(m_instance, m_surface, nullptr);
}
// Cleanup instance
if (m_instance != VK_NULL_HANDLE) {
vkDestroyInstance(m_instance, nullptr);
}
m_initialized = false;
qDebug() << "Vulkan cleanup complete";
}
void VulkanWidget::setRenderingEnabled(bool enabled)
{
if (m_renderingEnabled == enabled) {
return;
}
m_renderingEnabled = enabled;
if (m_renderingEnabled) {
qDebug() << "Vulkan rendering ENABLED - Resuming animations";
m_renderTimer->start(16); // ~60 FPS
// Unlocked: calculate lock duration
if (m_lastLockTime.isValid()) {
QDateTime unlockTime = QDateTime::currentDateTime();
m_lastLockDuration = m_lastLockTime.secsTo(unlockTime);
m_lockPaintFrameCount = m_frameCount - m_lastLockFrameCount;
qDebug() << "Screen was locked for" << m_lastLockDuration << "seconds";
qDebug() << "Frames at lock:" << m_lastLockFrameCount
<< "- Frames painted during lock:" << m_lockPaintFrameCount;
}
m_startTime = QDateTime::currentDateTime();
} else {
qDebug() << "Vulkan rendering DISABLED - Stopping animations";
m_renderTimer->stop();
// Locked: record lock time
m_pauseTime = QDateTime::currentDateTime();
m_lastLockTime = m_pauseTime;
m_lastLockFrameCount = m_frameCount;
m_lockCount++;
qDebug() << "Screen locked at" << m_lastLockTime.toString("yyyy-MM-dd hh:mm:ss")
<< "- Lock count:" << m_lockCount
<< "- Frame count at lock:" << m_lastLockFrameCount;
}
}
bool VulkanWidget::isRenderingEnabled() const
{
return m_renderingEnabled;
}
int VulkanWidget::getRenderFrameCount() const
{
return m_frameCount;
}
void VulkanWidget::resetFrameCount()
{
m_frameCount = 0;
qDebug() << "Frame count reset";
}
void VulkanWidget::showEvent(QShowEvent *event)
{
QWidget::showEvent(event);
if (!m_initialized) {
initializeVulkan();
}
}
void VulkanWidget::hideEvent(QHideEvent *event)
{
QWidget::hideEvent(event);
setRenderingEnabled(false);
}
void VulkanWidget::resizeEvent(QResizeEvent *event)
{
QWidget::resizeEvent(event);
if (m_initialized) {
m_needsResize = true;
// Note: Don't update renderer size here - it will be updated after swapchain recreation
// The renderer must use the actual surface dimensions (m_surfaceWidth/Height),
// not the widget dimensions, which may differ on high DPI displays
}
}
void VulkanWidget::paintEvent(QPaintEvent *event)
{
// Do nothing - rendering is handled by Vulkan
Q_UNUSED(event);
}
QPaintEngine* VulkanWidget::paintEngine() const
{
// Return nullptr to prevent Qt from using QPainter
return nullptr;
}
void VulkanWidget::onRenderTimer()
{
if (m_renderingEnabled) {
// Update animation parameters
m_rotationAngle += 2.0;
if (m_rotationAngle >= 360.0) {
m_rotationAngle -= 360.0;
}
m_wavePhase += 0.05;
if (m_wavePhase >= 2 * M_PI) {
m_wavePhase -= 2 * M_PI;
}
}
renderFrame();
}
void VulkanWidget::setError(const QString &error)
{
m_lastError = error;
qDebug() << "VulkanWidget Error:" << error;
}
std::vector<const char*> VulkanWidget::getRequiredInstanceExtensions()
{
std::vector<const char*> extensions;
extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
#ifdef _WIN32
extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#elif defined(__linux__)
extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
#elif defined(__APPLE__)
extensions.push_back(VK_EXT_METAL_SURFACE_EXTENSION_NAME);
#endif
return extensions;
}
std::vector<const char*> VulkanWidget::getRequiredDeviceExtensions()
{
std::vector<const char*> extensions;
extensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
return extensions;
}