#include "vulkanwidget.h" #include #include #include #include #include #include #include #include #include // Include volk for Vulkan function loading #define VK_NO_PROTOTYPES #include "../../third_party/volk/volk.h" // Platform-specific headers #ifdef _WIN32 #include #elif defined(__linux__) #include #endif VulkanWidget::VulkanWidget(QWidget *parent) : QWidget(parent) , m_instance(VK_NULL_HANDLE) , m_physicalDevice(VK_NULL_HANDLE) , m_device(VK_NULL_HANDLE) , m_queue(VK_NULL_HANDLE) , m_surface(VK_NULL_HANDLE) , m_swapchain(VK_NULL_HANDLE) , m_commandPool(VK_NULL_HANDLE) , m_initialized(false) , m_renderingEnabled(false) , m_needsResize(false) , m_frameCount(0) , m_queueFamilyIndex(0) , m_currentFrame(0) , m_surfaceWidth(0) , m_surfaceHeight(0) , m_renderTimer(nullptr) { // Set widget attributes for native window setAttribute(Qt::WA_NativeWindow); setAttribute(Qt::WA_PaintOnScreen); setAttribute(Qt::WA_OpaquePaintEvent); // Create render timer m_renderTimer = new QTimer(this); connect(m_renderTimer, &QTimer::timeout, this, &VulkanWidget::onRenderTimer); qDebug() << "VulkanWidget created"; } VulkanWidget::~VulkanWidget() { qDebug() << "VulkanWidget destroying..."; if (m_renderTimer) { m_renderTimer->stop(); } cleanupVulkan(); qDebug() << "VulkanWidget destroyed"; } bool VulkanWidget::initializeVulkan() { qDebug() << "Initializing Vulkan..."; if (m_initialized) { qDebug() << "Vulkan already initialized"; return true; } // Step 1: Initialize volk if (!initializeVolk()) { setError("Failed to initialize volk"); return false; } // Step 2: Create Vulkan instance if (!createInstance()) { setError("Failed to create Vulkan instance"); return false; } // Step 3: Create surface from native window if (!createSurface()) { setError("Failed to create Vulkan surface"); return false; } // Step 4: Select physical device if (!selectPhysicalDevice()) { setError("Failed to select physical device"); return false; } // Step 5: Create logical device if (!createDevice()) { setError("Failed to create logical device"); return false; } // Step 6: Create swapchain if (!createSwapchain()) { setError("Failed to create swapchain"); return false; } // Step 7: Create command objects if (!createCommandObjects()) { setError("Failed to create command objects"); return false; } // Step 8: Create synchronization objects if (!createSyncObjects()) { setError("Failed to create sync objects"); return false; } m_initialized = true; qDebug() << "Vulkan initialization successful"; return true; } bool VulkanWidget::initializeVolk() { qDebug() << "Initializing volk..."; VkResult result = volkInitialize(); if (result != VK_SUCCESS) { qDebug() << "Failed to initialize volk, error code:" << result; return false; } qDebug() << "Volk initialized successfully"; return true; } bool VulkanWidget::createInstance() { qDebug() << "Creating Vulkan instance..."; VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "VulkanWidget"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; std::vector extensions = getRequiredInstanceExtensions(); VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); createInfo.enabledLayerCount = 0; VkResult result = vkCreateInstance(&createInfo, nullptr, &m_instance); if (result != VK_SUCCESS) { qDebug() << "Failed to create Vulkan instance, error code:" << result; return false; } // Load instance-level functions volkLoadInstance(m_instance); qDebug() << "Vulkan instance created successfully"; return true; } bool VulkanWidget::createSurface() { qDebug() << "Creating Vulkan surface from native window..."; if (!windowHandle()) { qDebug() << "Window handle not available, creating window..."; create(); if (!windowHandle()) { qDebug() << "Failed to create window handle"; return false; } } QWindow *window = windowHandle(); #ifdef _WIN32 VkWin32SurfaceCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; createInfo.hwnd = reinterpret_cast(window->winId()); createInfo.hinstance = GetModuleHandle(nullptr); VkResult result = vkCreateWin32SurfaceKHR(m_instance, &createInfo, nullptr, &m_surface); #elif defined(__linux__) VkXlibSurfaceCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR; // Get X11 display - use default display createInfo.dpy = XOpenDisplay(nullptr); if (!createInfo.dpy) { qDebug() << "Failed to open X11 display"; return false; } createInfo.window = static_cast(window->winId()); VkResult result = vkCreateXlibSurfaceKHR(m_instance, &createInfo, nullptr, &m_surface); #elif defined(__APPLE__) // macOS requires MoltenVK and Metal VkMetalSurfaceCreateInfoEXT createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_METAL_SURFACE_CREATE_INFO_EXT; createInfo.pLayer = nullptr; // This needs proper Metal layer setup VkResult result = vkCreateMetalSurfaceEXT(m_instance, &createInfo, nullptr, &m_surface); #else qDebug() << "Unsupported platform for Vulkan surface creation"; return false; #endif if (result != VK_SUCCESS) { qDebug() << "Failed to create Vulkan surface, error code:" << result; return false; } qDebug() << "Vulkan surface created successfully"; return true; } bool VulkanWidget::selectPhysicalDevice() { qDebug() << "Selecting physical device..."; uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(m_instance, &deviceCount, nullptr); if (deviceCount == 0) { qDebug() << "Failed to find GPUs with Vulkan support"; return false; } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(m_instance, &deviceCount, devices.data()); // Select the first suitable device for (const auto& device : devices) { VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(device, &properties); qDebug() << "Found device:" << properties.deviceName; // Temporarily set physical device to check queue families m_physicalDevice = device; // Check if device supports our queue family uint32_t queueFamilyIndex; if (findQueueFamily(queueFamilyIndex)) { m_queueFamilyIndex = queueFamilyIndex; qDebug() << "Selected device:" << properties.deviceName; return true; } } // Reset if no suitable device found m_physicalDevice = VK_NULL_HANDLE; qDebug() << "Failed to find suitable physical device"; return false; } bool VulkanWidget::findQueueFamily(uint32_t &queueFamilyIndex) { uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(m_physicalDevice, &queueFamilyCount, queueFamilies.data()); for (uint32_t i = 0; i < queueFamilyCount; i++) { // Check if queue family supports graphics if (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { // Check if queue family supports presentation VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(m_physicalDevice, i, m_surface, &presentSupport); if (presentSupport) { queueFamilyIndex = i; return true; } } } return false; } bool VulkanWidget::createDevice() { qDebug() << "Creating logical device..."; float queuePriority = 1.0f; VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = m_queueFamilyIndex; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; VkPhysicalDeviceFeatures deviceFeatures = {}; std::vector deviceExtensions = getRequiredDeviceExtensions(); VkDeviceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = &queueCreateInfo; createInfo.queueCreateInfoCount = 1; createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); createInfo.enabledLayerCount = 0; VkResult result = vkCreateDevice(m_physicalDevice, &createInfo, nullptr, &m_device); if (result != VK_SUCCESS) { qDebug() << "Failed to create logical device, error code:" << result; return false; } // Load device-level functions volkLoadDevice(m_device); // Get queue handle vkGetDeviceQueue(m_device, m_queueFamilyIndex, 0, &m_queue); qDebug() << "Logical device created successfully"; return true; } bool VulkanWidget::createSwapchain() { qDebug() << "Creating swapchain..."; // Query surface capabilities VkSurfaceCapabilitiesKHR capabilities; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(m_physicalDevice, m_surface, &capabilities); // Query surface formats uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, nullptr); std::vector formats(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(m_physicalDevice, m_surface, &formatCount, formats.data()); // Query present modes uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &presentModeCount, nullptr); std::vector presentModes(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(m_physicalDevice, m_surface, &presentModeCount, presentModes.data()); // Select format VkSurfaceFormatKHR surfaceFormat = formats[0]; for (const auto& format : formats) { if (format.format == VK_FORMAT_B8G8R8A8_SRGB && format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { surfaceFormat = format; break; } } // Select present mode (prefer mailbox, fallback to FIFO) VkPresentModeKHR presentMode = VK_PRESENT_MODE_FIFO_KHR; for (const auto& mode : presentModes) { if (mode == VK_PRESENT_MODE_MAILBOX_KHR) { presentMode = mode; break; } } // Determine extent VkExtent2D extent; if (capabilities.currentExtent.width != UINT32_MAX) { extent = capabilities.currentExtent; } else { extent.width = std::max(capabilities.minImageExtent.width, std::min(capabilities.maxImageExtent.width, static_cast(width()))); extent.height = std::max(capabilities.minImageExtent.height, std::min(capabilities.maxImageExtent.height, static_cast(height()))); } m_surfaceWidth = extent.width; m_surfaceHeight = extent.height; // Determine image count uint32_t imageCount = capabilities.minImageCount + 1; if (capabilities.maxImageCount > 0 && imageCount > capabilities.maxImageCount) { imageCount = capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = m_surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; createInfo.preTransform = capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; VkResult result = vkCreateSwapchainKHR(m_device, &createInfo, nullptr, &m_swapchain); if (result != VK_SUCCESS) { qDebug() << "Failed to create swapchain, error code:" << result; return false; } // Retrieve swapchain images vkGetSwapchainImagesKHR(m_device, m_swapchain, &imageCount, nullptr); m_swapchainImages.resize(imageCount); vkGetSwapchainImagesKHR(m_device, m_swapchain, &imageCount, reinterpret_cast(m_swapchainImages.data())); qDebug() << "Swapchain created successfully with" << imageCount << "images, size:" << m_surfaceWidth << "x" << m_surfaceHeight; return true; } bool VulkanWidget::createCommandObjects() { qDebug() << "Creating command objects..."; VkCommandPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.queueFamilyIndex = m_queueFamilyIndex; poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VkResult result = vkCreateCommandPool(m_device, &poolInfo, nullptr, &m_commandPool); if (result != VK_SUCCESS) { qDebug() << "Failed to create command pool, error code:" << result; return false; } m_commandBuffers.resize(MAX_FRAMES_IN_FLIGHT); VkCommandBufferAllocateInfo allocInfo = {}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.commandPool = m_commandPool; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandBufferCount = static_cast(m_commandBuffers.size()); result = vkAllocateCommandBuffers(m_device, &allocInfo, m_commandBuffers.data()); if (result != VK_SUCCESS) { qDebug() << "Failed to allocate command buffers, error code:" << result; return false; } qDebug() << "Command objects created successfully"; return true; } bool VulkanWidget::createSyncObjects() { qDebug() << "Creating synchronization objects..."; m_imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); m_renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); m_inFlightFences.resize(MAX_FRAMES_IN_FLIGHT); VkSemaphoreCreateInfo semaphoreInfo = {}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo = {}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { if (vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &m_imageAvailableSemaphores[i]) != VK_SUCCESS || vkCreateSemaphore(m_device, &semaphoreInfo, nullptr, &m_renderFinishedSemaphores[i]) != VK_SUCCESS || vkCreateFence(m_device, &fenceInfo, nullptr, &m_inFlightFences[i]) != VK_SUCCESS) { qDebug() << "Failed to create synchronization objects"; return false; } } qDebug() << "Synchronization objects created successfully"; return true; } bool VulkanWidget::recreateSwapchain() { qDebug() << "Recreating swapchain..."; // Wait for device to be idle vkDeviceWaitIdle(m_device); // Cleanup old swapchain cleanupSwapchain(); // Create new swapchain if (!createSwapchain()) { qDebug() << "Failed to recreate swapchain"; return false; } qDebug() << "Swapchain recreated successfully"; return true; } void VulkanWidget::renderFrame() { if (!m_initialized || !m_renderingEnabled) { return; } // Wait for previous frame vkWaitForFences(m_device, 1, &m_inFlightFences[m_currentFrame], VK_TRUE, UINT64_MAX); // Acquire next image uint32_t imageIndex; VkResult result = vkAcquireNextImageKHR(m_device, m_swapchain, UINT64_MAX, m_imageAvailableSemaphores[m_currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR) { recreateSwapchain(); return; } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) { qDebug() << "Failed to acquire swapchain image"; return; } // Reset fence vkResetFences(m_device, 1, &m_inFlightFences[m_currentFrame]); // Record command buffer vkResetCommandBuffer(m_commandBuffers[m_currentFrame], 0); recordCommandBuffer(m_commandBuffers[m_currentFrame], imageIndex); // Submit command buffer VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = {m_imageAvailableSemaphores[m_currentFrame]}; VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &m_commandBuffers[m_currentFrame]; VkSemaphore signalSemaphores[] = {m_renderFinishedSemaphores[m_currentFrame]}; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; result = vkQueueSubmit(m_queue, 1, &submitInfo, m_inFlightFences[m_currentFrame]); if (result != VK_SUCCESS) { qDebug() << "Failed to submit draw command buffer"; return; } // Present VkPresentInfoKHR presentInfo = {}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; VkSwapchainKHR swapchains[] = {m_swapchain}; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapchains; presentInfo.pImageIndices = &imageIndex; result = vkQueuePresentKHR(m_queue, &presentInfo); if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || m_needsResize) { m_needsResize = false; recreateSwapchain(); } else if (result != VK_SUCCESS) { qDebug() << "Failed to present swapchain image"; } m_currentFrame = (m_currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; m_frameCount++; } void VulkanWidget::recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) { VkCommandBufferBeginInfo beginInfo = {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; vkBeginCommandBuffer(commandBuffer, &beginInfo); // Simple clear color pass - cycle through colors based on frame count VkClearColorValue clearColor; float hue = (m_frameCount % 360) / 360.0f; float r = std::abs(std::sin(hue * 6.28318f)); float g = std::abs(std::sin((hue + 0.33f) * 6.28318f)); float b = std::abs(std::sin((hue + 0.66f) * 6.28318f)); clearColor.float32[0] = r * 0.5f + 0.1f; clearColor.float32[1] = g * 0.5f + 0.1f; clearColor.float32[2] = b * 0.5f + 0.1f; clearColor.float32[3] = 1.0f; VkImageSubresourceRange range = {}; range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; range.baseMipLevel = 0; range.levelCount = 1; range.baseArrayLayer = 0; range.layerCount = 1; VkImage image = reinterpret_cast(m_swapchainImages[imageIndex]); // Transition to transfer dst VkImageMemoryBarrier barrier1 = {}; barrier1.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier1.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; barrier1.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier1.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier1.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier1.image = image; barrier1.subresourceRange = range; barrier1.srcAccessMask = 0; barrier1.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier1); // Clear image vkCmdClearColorImage(commandBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &clearColor, 1, &range); // Transition to present VkImageMemoryBarrier barrier2 = {}; barrier2.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier2.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier2.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; barrier2.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier2.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier2.image = image; barrier2.subresourceRange = range; barrier2.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier2.dstAccessMask = 0; vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier2); vkEndCommandBuffer(commandBuffer); } void VulkanWidget::cleanupSwapchain() { if (m_swapchain != VK_NULL_HANDLE) { vkDestroySwapchainKHR(m_device, m_swapchain, nullptr); m_swapchain = VK_NULL_HANDLE; } m_swapchainImages.clear(); m_swapchainImageViews.clear(); } void VulkanWidget::cleanupVulkan() { if (!m_initialized) { return; } if (m_device != VK_NULL_HANDLE) { vkDeviceWaitIdle(m_device); } // Cleanup sync objects for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { if (m_imageAvailableSemaphores[i] != VK_NULL_HANDLE) { vkDestroySemaphore(m_device, m_imageAvailableSemaphores[i], nullptr); } if (m_renderFinishedSemaphores[i] != VK_NULL_HANDLE) { vkDestroySemaphore(m_device, m_renderFinishedSemaphores[i], nullptr); } if (m_inFlightFences[i] != VK_NULL_HANDLE) { vkDestroyFence(m_device, m_inFlightFences[i], nullptr); } } // Cleanup command pool if (m_commandPool != VK_NULL_HANDLE) { vkDestroyCommandPool(m_device, m_commandPool, nullptr); } // Cleanup swapchain cleanupSwapchain(); // Cleanup device if (m_device != VK_NULL_HANDLE) { vkDestroyDevice(m_device, nullptr); } // Cleanup surface if (m_surface != VK_NULL_HANDLE) { vkDestroySurfaceKHR(m_instance, m_surface, nullptr); } // Cleanup instance if (m_instance != VK_NULL_HANDLE) { vkDestroyInstance(m_instance, nullptr); } m_initialized = false; qDebug() << "Vulkan cleanup complete"; } void VulkanWidget::setRenderingEnabled(bool enabled) { if (m_renderingEnabled == enabled) { return; } m_renderingEnabled = enabled; if (m_renderingEnabled) { qDebug() << "Vulkan rendering enabled"; m_renderTimer->start(16); // ~60 FPS } else { qDebug() << "Vulkan rendering disabled"; m_renderTimer->stop(); } } bool VulkanWidget::isRenderingEnabled() const { return m_renderingEnabled; } int VulkanWidget::getRenderFrameCount() const { return m_frameCount; } void VulkanWidget::resetFrameCount() { m_frameCount = 0; qDebug() << "Frame count reset"; } void VulkanWidget::showEvent(QShowEvent *event) { QWidget::showEvent(event); if (!m_initialized) { initializeVulkan(); } } void VulkanWidget::hideEvent(QHideEvent *event) { QWidget::hideEvent(event); setRenderingEnabled(false); } void VulkanWidget::resizeEvent(QResizeEvent *event) { QWidget::resizeEvent(event); if (m_initialized) { m_needsResize = true; } } void VulkanWidget::paintEvent(QPaintEvent *event) { // Do nothing - rendering is handled by Vulkan Q_UNUSED(event); } QPaintEngine* VulkanWidget::paintEngine() const { // Return nullptr to prevent Qt from using QPainter return nullptr; } void VulkanWidget::onRenderTimer() { renderFrame(); } void VulkanWidget::setError(const QString &error) { m_lastError = error; qDebug() << "VulkanWidget Error:" << error; } std::vector VulkanWidget::getRequiredInstanceExtensions() { std::vector extensions; extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #ifdef _WIN32 extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #elif defined(__linux__) extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME); #elif defined(__APPLE__) extensions.push_back(VK_EXT_METAL_SURFACE_EXTENSION_NAME); #endif return extensions; } std::vector VulkanWidget::getRequiredDeviceExtensions() { std::vector extensions; extensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); return extensions; }